
Project Vision Document

Project Title: Hybrid Backup Service with Decentralized Sovereignty

Team Name: Team Mysten

Team Members:

●​ Neil Roy (neilroy@ucsb.edu)
●​ Kevin Lee (kjlee@ucsb.edu)
●​ Edwin Medrano Villela (eemedranovillela@ucsb.edu)
●​ Awin Zhang (awin@ucsb.edu)
●​ Suhrit Padakanti (suhrit@ucsb.edu)

Team Lead: Neil Roy
Team Scribe: Kevin Lee

Industry Partners:
Alberto Sonnino (alberto@mystenlabs.com)
Deepak Maram (deepak@mystenlabs.com)

Company Overview:
Mysten Labs is a Web3 infrastructure company focused on building Sui, a high-performance
Layer-1 blockchain designed for scalability and mass adoption. Its technology emphasizes
parallel transaction execution, scalable storage, and an object-centric data model, enabling
developers to create next-generation decentralized applications across gaming, finance, and
social platforms.

Problem Statement:
Traditional cloud backup services often force users into a trade-off between usability,
security, and long-term accessibility. Even when encrypted storage is offered, users
remain dependent on a single centralized provider. This creates risks:

●​ Lock-in: Providers may shut down, increase prices, or alter policies (e.g., reduce
encryption guarantees), leaving users with limited options.

●​ Regulatory pressure: Centralized providers may be compelled to compromise
security measures.

●​ Data loss: If the central service fails, users may permanently lose access to
backups.

mailto:neilroy@ucsb.edu
mailto:awin@ucsb.edu
mailto:suhrit@ucsb.edu
mailto:alberto@mystenlabs.com
mailto:deepak@mystenlabs.com

Project Overview:
This project aims to combine the convenience and performance of a
centralized backup service with the resilience and sovereignty afforded by decentralized
storage. By integrating Walrus (https://www.walrus.xyz) as a secondary backend, we
enable users to retain control over their encrypted data, even if the centralized provider
changes its policies or ceases operations.

Technical Approach:
The architecture introduces a hybrid storage model:
●​ Centralized Layer:

○​ Provides fast-access caching to ensure a smooth user experience.
○​ Handles bandwidth-heavy synchronization with Walrus, shielding end users from large

data overhead (up to 4–5x bandwidth amplification).
○​ Abstracts the complexity of blockchain interactions, managing WAL/SUI payments while

offering common subscription models (credit card, etc.).
○​ Automates blob lifecycle management (renewals, expirations) so users are not burdened

with low-level storage concerns.
●​ Decentralized Layer (Walrus):

○​ Stores encrypted user data as independently retrievable blobs.
○​ Ensures long-term persistence, service portability, and user sovereignty.
○​ Acts as the failsafe: if the centralized service fails or policies change, users (or new

providers) can directly access data blobs

Expected Benefits:
●​ Full user control → Users can retrieve their encrypted data from Walrus at any time,

independently of any service lock
●​ Provider flexibility → Rather than spending unnecessary resources on re-uploads, new

providers can service using existing data stored in Walrus
●​ Usability without compromise → End-to-end encryption, high availability, and a smooth user

experience are not compromised by the decentralized storage system via a centralized cache
●​ Sustainable ecosystem adoption → By handling operational challenges (payments, renewals,

bandwidth optimization), the service makes decentralized storage viable for mainstream
backup users.

Technologies:
●​ Languages: TypeScript (Node.js), Python (limited usage for quick scripts)
●​ SDKs: Walrus TypeScript SDK (@mysten/walrus)
●​ Payments: Suiet (@suiet/wallet-kit)
●​ Infra: Docker (reproducibility), GitHub (CI/CD)

https://www.npmjs.com/package/@suiet/wallet-kit

Timeline:
Week 1 — Research & Setup
●​ Learn about decentralized storage and Walrus architecture
●​ Explore use cases and security properties (i.e. confidentiality, integrity, availability,

sovereignty)
●​ Install and test the Walrus CL
●​ Store and retrieve test blobs

Week 2 — Basic Walrus Integration
●​ Build simple scripts or a minimal app to automate:

○​ Blob upload and retrieval with Walrus
●​ Validate different file types and sizes
●​ Explore WAL/SUI payment

Week 3 — Encryption Layer
●​ Choose an encryption scheme (i.e. AES-GCM)
●​ Implement client-side encryption:

○​ Encrypt uploads and decrypt downloads
●​ Ensure encryption is transparent to storage logic

Week 4 — Caching Layer
●​ Build a caching service on a centralized server:

○​ Acts as a proxy between the client and Walrus
○​ Caches uploaded/downloaded blobs

●​ Add the ability to optionally handle encryption in the caching layer (if not on the client)

Week 5 — Performance
●​ Log upload/retrieval performance for comparison
●​ [Challenge] Handle lazy upload (buffer locally, upload later)

Week 6 — Client Interface
●​ Implement client UX:

○​ CLI (e.g. upload, download, status) OR simple web app (React/Vite or minimal Flask
backend)

●​ Add config for selecting encryption and caching mode

Week 7 — Resilience & Direct Recovery
●​ Implement fallback: if cache is down, client retries via Walrus
●​ Validate user sovereignty: client can recover all blobs independently

Week 8 — Testing & Final Presentation
●​ Prepare a demo scenario:

○​ Upload → encrypted → cache → Walrus
○​ Kill cache → retrieve from Walrus

●​ Write the final report/documentation and record the demo

Process Model - Agile Methodology
●​ Individuals and interactions over processes and tools.
●​ Working software over comprehensive documentation.
●​ Customer collaboration over contract negotiation.
●​ Responding to change over following a plan

Conclusion:
This project aims to mitigate the drawbacks of centralized backup storage and decentralized
sovereignty by implementing a hybrid storage model that enables full user sovereignty with
Walrus while maintaining service portability to prevent costly reuploads. Ultimately, this project
delivers a new backup solution that combines the simplicity and performance of mainstream
backup services while embedding decentralized resilience at its core.

